The independent isomeric-yield ratios of 89m,gNb for the 93Nb(γ, 4n) 89m,gNb reaction with bremsstrahlung energies of 45-, 50-, 55-, 60-, and 70-MeV were measured by the activation and the off-line γ-ray spectrometric technique at 100 MeV electron linac of the Pohang accelerator laboratory. The isomeric-yield ratios of 89m,gNb for the natZr(p, xn) 89m,gNb and the 89Y(α, 4n) 89m,gNb reactions were measured by using a stacked-foil activation technique with the proton energies of 19–45 MeV and alpha energies of 38.9-, 40.5-, and 42.5-MeV at the MC-50 cyclotron of Korea Institute of Radiological and Medical Sciences. The measured isomeric-yield ratio of 89m,gNb from the 93Nb(γ, 4n), natZr(p, xn), and 89Y(α, 4n) reactions were compared with the similar literature data in the 89Y(3He, 3n) reaction. It was found that the isomeric yield ratio of 89m,gNb increases with projectile energy, which indicate the effect of excitation energy. However, for the similar compound nucleus with the same excitation energy, the isomeric-yield ratios of 89m,gNb in the 89Y(α, 4n) and 89Y(3He, 3n) reactions are higher than those in the 93Nb(γ, 4n) and natZr(p, xn) reactions, which indicates the role of input angular momentum. The isomeric-yield ratios of 89m,gNb in the 93Nb(γ, 4n), natZr(p, xn), 89Y(α, 4n), and 89Y(3He, 3n) reactions were also calculated theoretically using computer code TALYS 1.4. The theoretical isomeric-yield ratios of 89m,gNb from four reactions increase with excitation energy. However, the theoretical value are significantly higher than the experimental data in the 93Nb(γ, 4n) and natZr(p, xn) reactions but slightly lower or comparable in the 89Y(α, 4n) rand 89Y(3He, 3n) reactions.
Read full abstract