A role for phospholipase C (PLC) hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) as a mechanism of alpha 1-adrenergic signal transduction in human airway epithelial cells (AEC) was investigated in isolated normal tracheal and cystic fibrosis (CF) nasal epithelial cells grown in in vitro culture and prelabeled with 3 muCi myo-[3H]inositol/ml for 72 h. Breakdown of polyphosphoinositides was measured using thin-layer chromatography to detect phosphatidylinositol, phosphatidylinositol 4-phosphate (PIP), and PIP2. Inositol phosphates were separated by ion-exchange column chromatography. In normal AEC, the addition of the endogenous catecholamine l-epinephrine produced a rapid, transient accumulation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2) and breakdown of PIP and PIP2. IP3 increased 1.7-fold and IP2 1.6-fold after 20 and 40 s, respectively. A maximal decrease of 35% PIP2 and 30% PIP is observed after 20 and 40 s, respectively. The effects of l-epinephrine were not blocked by the beta-adrenergic antagonist dl-propranolol but were mimicked by the alpha 1-adrenergic agonist methoxamine. Prazosin, an alpha 1-adrenergic antagonist, and pertussis toxin (PTX) blocked the effects of l-epinephrine and methoxamine. Addition of l-epinephrine and methoxamine to CF nasal epithelial cells also induced prazosin-sensitive polyphosphoinositide breakdown and inositol phosphate accumulation. A 2.2-fold accumulation of IP3 was observed after 10 s and 2.0-fold increase in IP2 after 20 s. Maximal decreases of 32% PIP2 and 23% PIP levels were observed after 20-s incubation with l-epinephrine. PTX reduced the effects of l-epinephrine and significantly blocked the effects of methoxamine.(ABSTRACT TRUNCATED AT 250 WORDS)