Abstract

The release of amino acids and the hydrolysis of inositol phospholipids were examined in parallel in three hippocampal areas following classical conditioning. Paired or unpaired tone(CS) - shock(US) presentations were given to animals engaged in a previously acquired food-motivated lever-pressing task. Conditioned suppression of lever-pressing was the behavioural measure of conditioning. Twenty-four hours after the last conditioning session, the dentate gyrus and areas CA3 and CA1 of the hippocampus were removed bilaterally from conditioned and pseudoconditioned animals, and slices cut and stored in liquid nitrogen for subsequent analysis. Crude synaptosomal pellets were prepared to investigate: (i) potassium-stimulated release of preloaded [3H]glutamate and [14C]aspartate in the presence and absence of extracellular Ca2+; (ii) [3H]inositol labelling of phosphoinositides and inositol phosphates; and (iii) [14C]arachidonic acid labelling of 1,2-diacylglycerol (1,2-DG). Potassium-stimulated, Ca2+-dependent release of [3H]glutamate in synaptosomes prepared from the dentate gyrus and area CA3 was significantly greater in conditioned animals than in pseudoconditioned animals. In area CA1, K+-stimulated, Ca2+-dependent release of [14C]aspartate was significantly increased in conditioned animals. These results confirm in synaptosomes, and extend to a period of 24 h our previous report of an increased release of transmitter in the dentate gyrus and hippocampus associated with classical conditioning. In parallel with the increased release of amino acids, learning was associated with a significant increase in labelling of phosphoinositides and inositol phosphates by [3H]inositol and a significant increase in labelling of 1,2-DG by [14C]arachidonic acid in the three hippocampal areas examined. It is suggested that a long-lasting presynaptic activation of inositol lipid metabolism may contribute to the learning-dependent increase in the capacity of hippocampal terminals to release transmitter and hence to the maintenance of a neurochemical trace which may, at least in part, underlie lasting changes in synaptic function built up during associative learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call