An engine lubrication system is one of the main factors which influence engine life span, and it can be easily determined based on the viscosity of the engine oil. The current and common technology for monitoring and the determination of the engine oil viscosity using the oil analysis method is found to be uneconomical and ineffective. On the same vein, this paper presents an investigation of the capability of the Metal Magnetic Memory (MMM) technology in the processes of monitoring and detecting the variation of petrol engine lubricant viscosity via in-situ operation. A few investigations were conducted on a Robin Engine 126 cc EX 13D single cylinder of four strokes with water cooling. One multi-grade engine lubricant oil condition has been put to the test; namely, SAE 15W-40. During the investigation of the petrol engine oil viscosity, the magnetic field signal is captured when the engine oil in-service age is 0 km (fresh oil), 250 km, 500 km, 750 km and 1,000 km, with the crankshaft rotational speed of 2500 rpm at three different locations such as at the Bottom Dead Centre (BDC), oil sump A (engine oil inlet), and oil sump B. The lubrication condition in the petrol engine is successfully monitored based on the magnetic field signatures generated by the interaction between the piston surface and the layer of the lubricant during the time when the engine was in operation. The generated MMM signatures were captured using a type 2 scanning device with two ferroprobe sensors and a length measuring sensor and recorded by the TSC-3M-12 type device. The waveform signatures captured were displayed as length domain signal and then were analysed using the MATLAB software to determine the magnetic field energy (EH). In addition, the real viscosity value at room temperature was determined using the Haake Viscotester 6 L, each time after the magnetic field signal was captured. The results of these studies have shown that the magnetic field energy (EH) is inversely proportional to engine oil viscosity. Finally, the MMM technology can be utilised in promoting economic development and effective planning of the maintenance schedule of the petrol engine oil.
Read full abstract