Abstract

A variable speed refrigeration system was designed to supply chilled liquid for cooling high-power electronic devices to maintain the temperature at an acceptable level. Fin-plate heat exchangers were adopted to save space. The paper presents the simulation of the refrigeration system to study its steady performance. The simulation model was developed by using a detailed thermodynamic model and containing a series of heat transfer correlations for specific parameters. The cooling capacity of the refrigeration system under different working conditions is investigated. The simulation results keep in agreement with experimental data. The cooling capacity increases with the rise of cooled oil inlet temperature. Besides, condenser cooling liquid inlet temperature affects the cooling capacity greatly. The cooling capacity and the coefficient of performance (COP) of the system under different motor speeds are studied subsequently. The simulation results have been validated by experiments. The mean relative error of the cooling capacity and the COP between simulation results and experimental data is 12.6% and 4.8%, respectively. The results can be used to develop control strategy for regulating refrigeration flow rate to offer adequate cooling capacity and supply cooled oil of constant temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.