Perovskite solar cells (PSCs) with an excellent optoelectronic performance have intrigued mushrooming research interests, and the undesirable intrinsic stability of halide perovskite materials still remains a severe constraint for their practical application. Fortunately, the ambiguous and complicated incentives for the degradation process of PSCs under working condition can be directly reflected on the corrosion of silver electrode by halogens. Here, a new perspective for evaluating the long-term stability of PSCs is presented by the time-dependent transverse resistance of the ultrathin silver electrode under different working conditions. Being anode or cathode, the stability of ultra-thin silver layer has been systematically investigated through adjusting the external operating conditions of devices, i.e. light illumination and bias voltage. Experimental results indicate that the gradual resistance increases of silver film can be attributed to the oxidation of I− existing on the top surface of perovskite layer by non-equilibrium holes generated from light illumination or electrical injection for producing corrosive I2 gas, which will diffuse through the carrier transporting layer and attack the thin silver layer. The interaction probability of I− and non-equilibrium holes at the interface plays a critical role on the generation of I2 gas and resistance variation of the top thin silver electrode. The stability study of electrode indicator will shed light on the ambiguous degradation mechanisms of PSC under working condition, paving a path for conquering the fatal problems of the practical application.
Read full abstract