BackgroundActivation of mast cells plays an important role in brain inflammation. CD300a, an inhibitory receptor located on mast cell surfaces, has been reported to reduce the production of pro-inflammatory cytokines and exert protective effects in inflammation-related diseases. Peroxisome proliferator–activated receptor β/δ (PPARβ/δ), a ligand-activated nuclear receptor, activation upregulates the transcription of CD300a. In this study, we aim to investigate the role of PPARβ/δ in the attenuation of germinal matrix hemorrhage (GMH)-induced mast cell activation via CD300a/SHP1 pathway. MethodsGMH model was induced by intraparenchymal injection of bacterial collagenase into the right hemispheric ganglionic eminence in P7 Sprague Dawley rats. GW0742, a PPARβ/δ agonist, was administered intranasally at 1 h post-ictus. CD300a small interfering RNA (siRNA) and PPARβ/δ siRNA were injected intracerebroventricularly 5 days and 2 days before GMH induction. Behavioral tests, Western blot, immunofluorescence, Toluidine Blue staining, and Nissl staining were applied to assess post-GMH evaluation. ResultsResults demonstrated that endogenous protein levels of PPARβ/δ and CD300a were decreased, whereas chymase, tryptase, IL-17A and transforming growth factor β1 (TGF-β1) were elevated after GMH. GMH induced significant short- and long-term neurobehavioral deficits in rat pups. GW0742 decreased mast cell degranulation, improved neurological outcomes, and attenuated ventriculomegaly after GMH. Additionally, GW0742 increased expression of PPARβ/δ, CD300a and phosphorylation of SHP1, decreased phosphorylation of Syk, chymase, tryptase, IL-17A and TGF-β1 levels. PPARβ/δ siRNA and CD300a siRNA abolished the beneficial effects of GW0742. ConclusionsGW0742 inhibited mast cell-induced inflammation and improved neurobehavior after GMH, which is mediated by PPARβ/δ/CD300a/SHP1 pathway. GW0742 may serve as a potential treatment to reduce brain injury for GMH patients.