Abstract
BackgroundNeuroinflammation is a crucial factor contributing to neurological injuries after intracerebral hemorrhage (ICH). C1q/TNF-related protein 9 (CTRP9), an agonist of adiponectin receptor 1 (AdipoR1), has recently been shown to reduce inflammatory responses in systemic diseases. The objective of this study was to investigate the protective role of CTRP9 against neuroinflammation after ICH in a mouse model and to explore the contribution of adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor kappa B (NFκB) pathway in AdipoR1-mediated protection.MethodsAdult male CD1 mice (n = 218) were randomly assigned to different groups for the study. ICH was induced via intrastriatal injection of bacterial collagenase. Recombinant CTRP9 (rCTRP9) was administered intranasally at 1 h after ICH. To elucidate the underlying mechanism, AdipoR1 small interfering ribonucleic acid (siRNA) and selective phosphorylated AMPK inhibitor Dorsomorphin were administered prior to rCTRP9 treatment. Brain edema, short- and long-term neurobehavior evaluation, blood glucose level, western blot, and immunofluorescence staining were performed.ResultsEndogenous CTRP9 and AdipoR1 expression was increased and peaked at 24 h after ICH. AdipoR1 was expressed by microglia, neurons, and astrocytes. Administration of rCTRP9 reduced brain edema, improved short- and long-term neurological function, enhanced the expression of AdipoR1 and p-AMPK, and decreased the expression of phosphorylated NFκB and inflammatory cytokines after ICH. The protective effects of rCTRP9 were abolished by administration of AdipoR1 siRNA and Dorsomorphin.ConclusionsOur findings demonstrated that administration of rCTRP9 attenuated neuroinflammation through AdipoR1/AMPK/NFκB signaling pathway after ICH in mice, thereby reducing brain edema and improving neurological function after experimental ICH in mice. Therefore, CTRP9 may provide a potential therapeutic strategy to alleviate neuroinflammation in ICH patients.
Highlights
Neuroinflammation is a crucial factor contributing to neurological injuries after intracerebral hemorrhage (ICH)
Immunofluorescence staining showed that adiponectin receptor 1 (AdipoR1) was expressed in microglia (Iba-1), neurons (NeuN), and astrocytes (GFAP) at 24 h post-ICH (Fig. 1c)
We found that Recombinant CTRP9 (rCTRP9) administration improved both short- and long-term neurobehavioral outcomes, alleviated brain edema, and attenuated neuroinflammation after ICH, which were accompanied by an increase in AdipoR1 and p-Adenosine monophosphateactivated protein kinase (AMPK) expression and a decrease in pro-inflammatory factors tumor necrosis factorα (TNFα) and IL-6 expression
Summary
Neuroinflammation is a crucial factor contributing to neurological injuries after intracerebral hemorrhage (ICH). C1q/TNF-related protein 9 (CTRP9), an agonist of adiponectin receptor 1 (AdipoR1), has recently been shown to reduce inflammatory responses in systemic diseases. The objective of this study was to investigate the protective role of CTRP9 against neuroinflammation after ICH in a mouse model and to explore the contribution of adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor kappa B (NFκB) pathway in AdipoR1-mediated protection. Increasing evidence indicates that inflammatory response that occurs in the early stage after ICH is a key factor leading to secondary brain injury induced by ICH. Activation of AdipoR1 has been shown to have anti-inflammatory effects in the brain [6]. Studies have shown that CTRP9 has a protective effect against inflammation after cardiac ischemia [7, 8].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have