A partially saturated flow, which has an unsaturated layer in its upper part, has been monitored in the steep initiation zones of debris flows. Understanding the initiation and runout characteristics of partially saturated flows is essential for predicting the timing and magnitude of downstream debris flows. Monitoring performed using time-lapse cameras and water pressure sensors in the Ohya landslide scar in central Japan allowed us to obtain data on a series of partially saturated debris flow surges from initiation to termination on July 6, 2020, and July 13, 2021. Debris flow surges were mainly induced by repetitive mass movement of sediment deposit caused by the overland flow erosion of channel deposits, channel deposit slides, and water and sediment supply from channel banks and tributaries. The excess pore water pressure in a partially saturated flow on July 6, 2020, was clearly higher than that on July 13, 2021. Rainfall patterns, which control the water content in channel deposits, and the flow height likely affect the magnitude of the excess pore water pressure in partially saturated flows.