While Fluid-Mobile Elements (FMEs) such as B, Sb, Li, As or Cs are particularly concentrated in serpentinites, data on FME fluid–serpentine partitioning, distribution, and sequestration mechanisms are missing. In the present experimental study, the behavior of Sb, As and Cs during San Carlos olivine serpentinization was investigated using accurate mineralogical, geochemical, and spectroscopic characterization. Static-batch experiments were conducted at 200°C, under saturated vapor pressure (≈1.6MPa), for initial olivine grain sizes of <30μm (As), 30–56μm (As, Cs, Sb) and 56–150μm (Cs) and for periods comprised between 3 and 90days. High-hydroxyl-alkaline fluid enriched with 200mgL−1 of a single FME was used and a fluid/solid weight ratio of 15. For these particular conditions, olivine is favorably replaced by a mixture of chrysotile, polygonal serpentine and brucite. Arsenic, Cs or Sb reaction product content was determined as a function of reaction advancement for the different initial olivine grain sizes investigated. The results confirm that serpentinization products have a high FME uptake capacity with the partitioning coefficient increasing such as CsDp/fl=1.5–1.6<AsDp/fl=3.5–4.5<SbDp/fl=28 after complete reaction of the 30–56μm grain-sized olivine. The sequestration pathways of the three elements are however substantially different. While the As partition coefficient remains constant throughout the serpentinization reaction, the Cs partition coefficient decreases abruptly in the first stages of the reaction to reach a constant value after the reaction is 40–60% complete. Both As and Cs partitioning appear to decrease with increasing initial olivine grain size, but there is no significant difference in the partitioning coefficient between the 30–56 and 56–150μm grain size after complete serpentinization. X-ray absorption spectroscopy (XAS) measurements combined with X-ray chemical measurements reveal that the As(V) is mainly adsorbed onto the serpentinization products, especially brucite. In contrast, mineralogical characterization combined with XAS spectroscopy reveal redox sensitivity for Sb sequestration within serpentine products, depending on the progress of the reaction. When serpentinization is <50%, initial Sb(III) is oxidized into Sb(V) and substantially adsorbed onto serpentine. For higher degrees of reaction, a decrease in Sb sequestration by serpentine products is observed and is attributed to a reduction of Sb(V) into Sb(III). This stage is characterized by the precipitation of Sb–Ni-rich phases and a lower bulk partitioning coefficient compared to that of the serpentine and brucite assemblage. Antimony reduction appears linked to water reduction accompanying the bulk iron oxidation, as half the initial Fe(II) is oxidized into Fe(III) and incorporated into the serpentine products once the reaction is over. The reduction of Sb implies a decrease of its solubility, but the type of secondary Sb-rich phases identified here might not be representative of natural systems where Sb concentrations are lower. These results bring new insights into the uptake of FME by sorption on serpentine products that may form in hydrothermal environments at low temperatures. FME sequestration here appears to be sensitive to various physicochemical parameters and more particularly to redox conditions that appear to play a preponderant role in the concentrations and mechanism of sequestration of redox-sensitive elements.
Read full abstract