Abstract

The optimal pH value of the titration endpoint remains uncertain for the synthesis of antimony-doped tin oxide by the co-precipitation method. In this study, the influence of the pH titration endpoint on doping level and optical performance was systematically studied. The phase composition, microstructure, the valence state of Sb ions and thermodynamic behaviors of antimony-doped tin oxide were comprehensively investigated. The UV–Vis–NIR transmittance spectra of ATO glass and SEM images of ATO coating were also studied. When the pH value of the titration endpoint was 6, the measured doping ratio of Sb was 10.81% which was close to the initial Sb doping level of 10%. In the meanwhile, the content of Sb5+ ions also reached the maximum value of 76.4%. Especially, the spectrally selective coating exhibited optimally spectral selectivity with the average visible light transmittance of 77.24% and the average near-infrared shielding ratio of 80.06% respectively. The results show that the doping level and optical properties of antimony-doped tin oxide certainly relied on the pH value of the titration endpoint. It is of great significance to scale up the production of antimony-doped tin oxide with superior near-infrared shielding performance and promote its practical application in the field of energy-efficient glazing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.