Initial rates of uptake of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D; 20 microM) were measured in intact lateral choroid plexus from rat. Although inhibition of uptake by millimolar concentrations of estrone sulfate (ES) and unlabeled 2,4-D was maximal at 85%, inhibition by p-aminohippurate (PAH) saturated at about 50%. Inhibition by ES plus PAH was no greater than by ES or 2,4-D alone. Thus, inhibition studies indicated three distinct components of uptake; two mediated and one not. The sodium-dependent component of 2,4-D uptake coincided with the PAH-sensitive component, indicating uptake mediated by organic anion transporter subtype (Oat) 3. Consistent with this, efflux of 2,4-D from preloaded tissue was accelerated by all Oat3 substrates tested, and 2,4-D increased the efflux of the Oat3 substrate, PAH. Consistent with the inhibition data, kinetic analysis showed three components of 2,4-D uptake: a nonmediated component (linear kinetics), a high-affinity component, and a low-affinity component. The high-affinity component appeared to coincide with the PAH-sensitive and sodium-dependent component characterized in inhibition studies. The PAH-insensitive, low-affinity component was inhibited by ES, dehydroepiandrosterone sulfate, and taurocholate but not by 5-hydroxyindole acetic acid. Thus, the first step in transport of 2,4-D from cerebrospinal fluid to blood involves two transporters: Oat3 and a PAH-insensitive, sodium-independent transporter. Based on inhibitor profile, the latter may be Oatp3.
Read full abstract