Abstract

We tested the hypothesis that deletion of adenylyl cyclase type V (AC(V)) would be associated with decreased left ventricular (LV) contractile function and responsiveness to beta-adrenergic receptor (betaAR) stimulation. Absence of cardiac AC(V) expression was confirmed by RT-PCR and immunoblotting in AC(V)-deleted mice (AC(V) (-/-)). Compared to sibling mice with normal amounts of AC(V) (CON), basal and water-soluble forskolin derivative NKH477-stimulated cAMP production was reduced in both LV homogenates and in isolated cardiac myocytes. Basal LV +dP/dt (isolated perfused hearts) was increased (CON: 3,649 +/- 247 mmHg/s; AC(V) (-/-): 4,625 +/- 350 mmHg/s; p = 0.035, n = 10), but the potency of dobutamine on LV +dP/dt was decreased by AC(V) deletion (log EC(50): CON: -6.83 +/- 0.14 M; AC(V) (-/-): -5.99 +/- 0.15 M; p = 0.0007, n = 10). The initial rates of ATP-dependent sarcoplasmic reticulum calcium uptake, assessed in LV homogenates, showed that AC(V) deletion increased SERCA2a affinity for Ca(2+) (log EC(50): CON: -5.94 +/- 0.03 M; AC(V) (-/-): -6.09 +/- 0.02 M; p = 0.001, n = 8). AC(V) deletion is also associated with increased phospholamban phosphorylation, decreased type 1 protein phosphatase catalytic subunit content and activity, and reduced cardiac Galphas protein content. In conclusion, AC(V) deletion has a favorable effect on basal LV function despite reduced cAMP levels. Increased SERCA2a affinity for Ca(2+) and increased phospholamban phosphorylation are contributing factors. However, AC(V) deletion is associated with reduced LV contractile responsiveness to betaAR stimulation, an effect that is associated with reduced Galphas protein content and reduced cAMP generating capacity in cardiac myocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.