Cortical neuron-astrocyte communication in response to peripheral sensory stimulation occurs in a topographic-, frequency-, and intensity-dependent manner. However, the contribution of this functional interaction to the processing of sensory inputs and consequent behavior remains unclear. We investigate the role of astrocytes in sensory information processing at circuit and behavioral levels by monitoring and manipulating astrocytic activity invivo. We show that astrocytes control the dynamic range of the cortical network activity, optimizing its responsiveness to incoming sensory inputs. The astrocytic modulation of sensory processing contributes to setting the detection threshold for tactile and thermal behavior responses. The mechanism of such astrocytic control is mediated through modulation of inhibitory transmission to adjust the gain and sensitivity of responding networks. These results uncover a role for astrocytes in maintaining the cortical network activity in an optimal range to control behavior associated with specific sensory modalities.
Read full abstract