Abstract

The anteroventral bed nucleus of the stria terminalis (avBNST) is widely acknowledged as a key brain structure that regulates negative emotional states, such as anxiety. At present, it is still unclear whether GABAA receptor-mediated inhibitory transmission in the avBNST is involved in Parkinson's disease (PD)-related anxiety. In this study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats induced anxiety-like behaviors, increased GABA synthesis and release, and upregulated expression of GABAA receptor subunits in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). In both sham and 6-OHDA rats, intra-avBNST injection of GABAA receptor agonist muscimol induced the following changes: (i) anxiolytic-like responses, (ii) inhibition of the firing activity of GABAergic neurons in the avBNST, (iii) excitation of dopaminergic neurons in the ventral tegmental area (VTA) and serotonergic neurons in the dorsal raphe nucleus (DRN), and (iv) increase of DA and 5-HT release in the BLA, whereas antagonist bicuculline induced the opposite effects. Collectively, these findings suggest that degeneration of the nigrostriatal pathway enhances GABAA receptor-mediated inhibitory transmission in the avBNST, which is involved in PD-related anxiety. Further, activation and blockade of avBNST GABAA receptors affect the firing activity of VTA dopaminergic and DRN serotonergic neurons, and then change release of BLA DA and 5-HT, thereby regulating anxiety-like behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call