Condensed-bicyclic 4,6-substituted1,2,4-triazolo-1,3,4-thiadiazole derivatives (CBTT) have been shown to possess a wide spectrum of pharmacological activities. In this study, several novel CBTT derivatives were synthesized and investigated for their possible role as anti-neoplastic agents. The anti-proliferative effect of various CBTT derivatives was analyzed against tumor cell lines by (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. One of the potential CBTT derivative, 5-(3-(2,3-dichlorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)flurobenzonitrile (DTTF) was found to be the most potent against cervical cancer SiHa cells and exhibited minimal effect against normal cells. Molecular docking analysis indicated that transcription factor NF-κB was one of the potential molecular targets modulated by DTTF. Specifically, the drug blocked the TNFα-induced phosphorylation of upstream IκBα kinase in a time-dependent manner leading to the suppression of NF-κB activation and nuclear translocation. DTTF also potentiated the apoptotic effect of TNFα, as well as significantly inhibited migration and invasion of tumor cells. Overall, these findings indicate a potential novel role and mechanism(s) of action of DTTF as an anticancer agent against diverse malignancies.
Read full abstract