Transglutaminase 2 (TG2), a broadly expressed regulator of protein cross-linking, wound healing, and tissue fibrosis, mediates apoptotic cell ingestion and transforming growth factor-beta release by macrophages and thereby can limit leukocyte-mediated inflammation. In atherosclerosis, oxidative stress and accumulation of unesterified cholesterol stimulate atherosclerotic lesion cell apoptosis. Cell death in advanced atherosclerotic lesions promotes lesion expansion and vulnerable plaques prone to rupture. Hence, we tested the hypothesis that leukocyte TG2 expression limits atherosclerosis. We transplanted TG2-/- or TG2+/+ bone marrow into lethally irradiated low-density lipoprotein receptor (LDLR)-/- mice and evaluated diet-induced atherosclerosis after 16 weeks. We subsequently studied cultured TG2-/- and congenic TG2+/+ mouse macrophages for selected atherogenesis regulatory functions. Atherosclerotic aortic valve lesions in LDLR-/- recipients of TG2-/- bone marrow were larger and more subintimal lesional macrophage penetration than in TG2+/+ marrow recipients. Lesion intimal TG2 expression appeared robust in TG2+/+ but not TG2-/- marrow recipients. Cultured TG2-/- macrophages demonstrated diminished phagocytosis of apoptotic leukocytes, unaltered endocytosis, and degradation of oxidized LDL but decreased retinoic acid induction of the reverse cholesterol transport and apoptotic cell uptake mediator ABCA1. We conclude that macrophage TG2 expression promotes both apoptotic cell clearance and ABCA1 expression in vitro and limits atherosclerotic lesion size in vivo.