Abstract

Rapid recognition and ingestion of apoptotic cells by phagocytes are important for the prevention of toxic intracellular contents release, thereby attenuate inflammation and autoimmune diseases such as systemic lupus erythematosus (SLE). We have reported that oridonin isolated from Rabdosia rubescens enhanced phagocytosis of apoptotic U937 cells by macrophage-like U937 cells through TNFα and IL-1β release. In this study, the molecular mechanisms involved in this phagocytic process are investigated. Inhibitors of Ras and Raf1 kinase significantly reduced oridonin-induced phagocytic stimulation as well as extracellular signal-regulated kinase (ERK) phosphorylation. Simultaneously, oridonin-enhanced engulfment was partially blocked by a nuclear factor (NF)-κB inhibitor PDTC or proteasome inhibitor MG132. Further studies revealed that oridonin induced IκBα degradation, which was prevented by Ras inhibitor manumycin A, ERK inhibitor PD98059, but not prevented by c-Jun N-terminal kinase (JNK) MAPK inhibitor SP600125, and up-regulated expression of IL-1β precursor. These results demonstrate that Ras/Raf1/ERK signaling pathway-dependent IκBα degradation, resulting in NF-κB activation, participates in regulation of oridonin-enhanced phagocytosis, and one of its effector functions is to induce synthesis of IL-1β, which partially contribute to phagocytic activity of oridonin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.