In the quest for an efficient optical absorption of broad-band solar irradiation, intermediate-band solar cells composed of wide-bandgap semiconductors have attracted attention. In the present study, we developed and investigated the performance of wide-bandgap InGaP-based InP quantum dot (QD) solar cells. The solar cells were fabricated by solid-source molecular beam epitaxy, and their optical absorption range was found to be up to ∼850 nm, which is larger than the ∼680 nm optical absorption range of the host InGaP solar cells. Through the measurements of the voltage-dependent quantum efficiency, the photocarriers generated in the InGaP host were determined to be captured into the InP QDs, rather than expelled from the solar cells. The findings of this study highlight the need for the development of an optimized structure of intermediate-band solar cells to mitigate the capture of the photocarriers.
Read full abstract