Abstract The detection of multilayer clouds in the atmosphere can be particularly challenging from passive visible and infrared imaging radiometers since cloud boundary information is limited primarily to the topmost cloud layer. Yet detection of low clouds in the atmosphere is important for a number of applications, including aviation nowcasting and general weather forecasting. In this work, we develop pixel-based machine learning–based methods of detecting low clouds, with a focus on improving detection in multilayer cloud situations and specific attention given to improving the Cloud Cover Layers (CCL) product, which assigns cloudiness in a scene into vertical bins. The random forest (RF) and neural network (NN) implementations use inputs from a variety of sources, including GOES Advanced Baseline Imager (ABI) visible radiances, infrared brightness temperatures, auxiliary information about the underlying surface, and relative humidity (which holds some utility as a cloud proxy). Training and independent validation enlists near-global, actively sensed cloud boundaries from the radar and lidar systems on board the CloudSat and CALIPSO satellites. We find that the RF and NN models have similar performances. The probability of detection (PoD) of low cloud increases from 0.685 to 0.815 when using the RF technique instead of the CCL methodology, while the false alarm ratio decreases. The improved PoD of low cloud is particularly notable for scenes that appear to be cirrus from an ABI perspective, increasing from 0.183 to 0.686. Various extensions of the model are discussed, including a nighttime-only algorithm and expansion to other satellite sensors. Significance Statement Using satellites to detect the heights of clouds in the atmosphere is important for a variety of weather applications, including aviation weather forecasting. However, detecting low clouds can be challenging if there are other clouds above them. To address this, we have developed machine learning–based models that can be used with passive satellite instruments. These models use satellite observations at visible and infrared wavelengths, an estimate of relative humidity in the atmosphere, and geographic and surface-type information to predict whether low clouds are present. Our results show that these models have significant skill at predicting low clouds, even in the presence of higher cloud layers.