Abstract
Accurate cloud detection using infrared (IR) data is very challenging due to the limitations and uncertainties from many aspects in the satellite IR remote sensing. This article proposes an end-to-end cloud detection method for the Cross-track IR Sounder (CrIS) using machine learning (ML) techniques. The brightness temperatures from paired CrIS channels in the longwave and midwave water vapor bands and the longwave and shortwave CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> bands are used. After obtaining the linear regression coefficients for each of the selected channel pairs, a complete set of CrIS full spectral resolution (FSR) cloud detection index (FCDI) is derived from the temperature difference between the regression and observation for each channel pair. It is shown that FCDI captures cloud location and structure well by comparing with the cloud products (CPs) from the Visible IR Imaging Radiometer Suite (VIIRS). After collocating FCDI with VIIRS CP, ML techniques such as the extreme learning machine, support vector machine, and multilayer perceptron are used to train the collocated FCDIs for cloud detection. Simulation results show that the accuracy of FCDI cloud detection is slightly above 80%. Moreover, the results encourage the use of water vapor bands in FCDI, in addition to CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> bands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.