Close-proximity operations play a crucial role in emerging mission concepts, such as Active Debris Removal or small celestial bodies exploration. When approaching a non-cooperative target, the increased risk of collisions and reduced reliance on ground intervention necessitate autonomous on-board relative pose (position and attitude) estimation. Although navigation strategies relying on monocular cameras which operate in the visible (VIS) spectrum have been extensively studied and tested in flight for navigation applications, their accuracy is heavily related to the target’s illumination conditions, thus limiting their applicability range. The novelty of the paper is the introduction of a thermal-infrared (TIR) camera to complement the VIS one to mitigate the aforementioned issues. The primary goal of this work is to evaluate the enhancement in navigation accuracy and robustness by performing VIS-TIR data fusion within an Extended Kalman Filter (EKF) and to assess the performance of such navigation strategy in challenging illumination scenarios. The proposed navigation architecture is tightly coupled, leveraging correspondences between a known uncooperative target and feature points extracted from multispectral images. Furthermore, handover from one camera to the other is introduced to enable seamlessly operations across both spectra while prioritizing the most significant measurement sources. The pipeline is tested on Tango spacecraft synthetically generated VIS and TIR images. A performance assessment is carried out through numerical simulations considering different illumination conditions. Our results demonstrate that a combined VIS-TIR navigation strategy effectively enhances operational robustness and flexibility compared to traditional VIS-only navigation chains.