Abstract

Additive manufacturing (AM) is one of the key technologies in the global manufacturing market within various application sectors. The unique capabilities of AM enable high structural and part complexity, low material waste, and benefits in productivity by reducing design cycles and time to market. Efficient real-time quality control is still an important challenge in AM. In this paper, a real-time and in situ approach for monitoring the process in powder bed fusion of polyamide (PBF-LB/P/PA12) is proposed using the simultaneous application of two individual sensors, enabling the overlay and direct comparison of independent output data. An industrial grade laser profilometer and a thermal infrared (IR) camera were successfully integrated into a commercial system for PBF-LB/P. Artificially created curling defects were induced in a reproducible way by the manipulation of process parameters. The radiometric data was evaluated and processed into 3D topology and profile measurements to highlight peaks and curling progression. The results measured using different powder bed conditions were contrasted with corresponding thermographic data to prove the thermal visibility of curling and the influence of inhomogeneous temperature distribution on geometrical powder surface defects. The experimental setup enables the measuring of the entire powder bed surface inside the machine, with no limitations to sub-areas. Results indicate the measurable presence of curling and related temperature influences. When curling reached maximum values, inverted warpage into the negative z-direction was detected at part center as a further effect. These results can be used for improving real-time quality control in AM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call