ABSTRACT Spf1 is an important P-type ATPase in Candida albicans, which functions as an endoplasmic reticulum calcium pump to maintain calcium homoeostasis. The deficiency of Spf1 attenuates the virulence of C. albicans. However, its impact on immune response remains to be investigated. This study discovered that deletion of SPF1 resulted in a reduction of endoplasmic reticulum-plasma membrane contacts, an important structure mediating material and information exchange. This effect was attributed to the reduced plasma membrane localisation of the crucial endoplasmic reticulum-plasma membrane tethering proteins Ist2 and Tcb1/3. The reduction of the contacts led to a decrease in secretion of the virulence factors phospholipase, secreted aspartyl protease (SAP), candidalysin, and the cell wall-anchored protein Hwp1 during infection. Immunofluorescence staining and quantitative PCR assays further showed that the SPF1 deletion led to a remarkable decrease in the levels of pro-inflammatory cytokines, suggesting the alleviation of the fungus-induced inflammatory response. Ultimately, the regulatory role of Spf1 in immune response significantly weakened the infectivity of C. albicans, and increased the survival rate of the hosts. This finding elucidated the role of fungal calcium pump-governed endoplasmic reticulum-plasma membrane contacts in regulation of immune response. It also makes it possible to regulate the host’s immune response via control of SPF1 expression and functions, providing a theoretical basis for treating fungal infections.