Abstract

During battlefield operations, military radios (hereafter nodes) exchange information among various units using a mobile ad-hoc network (MANET) due to its infrastructure-less and self-healing capabilities. Adversarial cyberwarfare plays a crucial role in modern combat by disrupting communication between critical nodes (i.e., nodes mainly responsible for propagating important information) to gain dominance over the opposing side. However, determining critical nodes within a complex network is an NP-hard problem. This paper formulates a mathematical model to identify important links and their connected nodes, and presents JamBIT, a reinforcement learning-based framework with an encoder–decoder architecture, for efficiently detecting and jamming critical nodes. The encoder transforms network structures into embedding vectors, while the decoder assigns a score to the embedding vector with the highest reward. Our framework is trained and tested on custom-built MANET topologies using the Named Data Networking (NDN) protocol. JamBIT has been evaluated across various scales and weighting methods for both connected node and network dismantling problems. Our proposed method outperformed existing RL-based baselines, with a 24% performance gain for smaller topologies (50-100 nodes) and 8% for larger ones (400-500 nodes) in connected node problems, and a 7% gain for smaller topologies and 15% for larger ones in network dismantling problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.