In the face of intense urban expansion, the assessment of water quality plays a crucial role in environmental preservation. Here, we evaluated aquatic genotoxicity in three locations with different degrees of urbanization using Tradescantia pallida var. purpurea and Daphnia magna as bioindicators. The objective was to investigate the influence of urbanization on water quality and the efficiency of the TRAD-MCN biological test in monitoring aquatic genotoxicity. Therefore, we established the genotoxic potential by evaluating micronucleus frequency in T. pallida and immobilization and DNA damage in the standard test with D. magna during two seasons of the year (dry and rainy). Our results showed that the frequency of micronuclei in T. pallida (TRAD-MCN) was significantly higher in the locations with a higher degree of urbanization, independently of the seasons. The tests with D. magna revealed a higher rate of immobilization and DNA damage in the location most impacted by residential and industrial effluents (especially mining activities). Additionally, the TRAD-MCN proved to be equivalent to the standard test for genotoxicity assessment, supporting its potential applicability in environmental monitoring. Finally, we observed that urbanization significantly influences water quality, and among the evaluated physicochemical parameters, dissolved oxygen was shown to be the most important driver of the water quality index (WQI). Our findings have significant implications for water resource management, underlining the need for policies that consider the specificities of different regions. This highlights the robustness, flexibility, and reliability of T. pallida as an environmental monitoring tool.
Read full abstract