Abstract
Water quality degradation and eutrophication of lakes are global ecological and environmental concerns, especially shallow lakes. This study collected hydrochemical data from 2935 samples of the Chinese part of Xingkai (Khanka) Lake, based on 40 published papers spanning the period from 2001 to 2023. Using the water quality index (WQI), improved geo-accumulation index (Igeo), and redundancy analysis (RDA), we analyzed the overall contamination characteristics of the water environment in Xingkai Lake. Additionally, we explored the impact of climate change and human activities on the lake’s water quality. The results showed that the annual WQI for Xingkai Lake ranged from 47.3 to 72, with a general downward trend, indicating improving water quality. Notably, the average WQI in May and total nitrogen (TN) content decreased significantly, signaling further improvement in water quality. The average concentration of TN in sediments was 1401.3 mg/kg, reflecting mild contamination. The Igeo values for the heavy metals Hg and Cr were greater than 1, indicating moderate contamination, while the Igeo values for Cd and Pb were between 0 and 1, which is in the range of uncontaminated to moderately contaminated. Land use and climate change (average annual temperature and annual precipitation) were key factors influencing water quality, with cumulative explanatory ratios of 67.3% and 50.1%. This study utilized land-use change as a metric for human activities, highlighting the potential impacts of climate change and human activities on the water quality of Xingkai Lake. It offers vital insights for the sustainable management of Xingkai Lake and provides valuable references into the management of similar transboundary lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.