SummaryA growth chamber experiment was carried out to investigate the influence of day length and temperature on the development of flowering in eight varieties of the three grain lupin species Lupinus albus (Wat and C3396), L. angustifolius (Gungurru, Polonez and W26) and L. luteus, (Juno, Radames and Teo). The plants were grown at two temperatures, 10°C and 18°C, in combination with five daylength regimes: 10, 14, 18, 24 h day at full light intensity and 10 h full light extended with 8 h low intensity light. Increased daylength decreased days from sowing to flowering in all varieties, but had little effect on thermal time to flowering in most varieties. However, C3396, W26 and Radames had a significantly longer thermal time to flowering at high, non‐vernalising temperature (18°C) at short daylengths. Low light intensity daylength extension did not significantly influence thermal time to flowering. For flower initiation, measured as number of leaves on the main stem three types of response were found. All varieties formed fewer leaves on the main stem at 10°C than at 18°C, although the two thermo‐neutral varieties of L. luteus, Juno and Teo, gave only a small response to temperature and daylength. In Polonez, Gungurru and Wat, low temperature decreased leaf number, but there was only a small response to changes in daylength. Three varieties, C3396, W26 and Radames, showed longer thermal time to flowering at 18°C with short daylengths. This could be explained by a greater number of main stem leaves formed at short daylength at non‐vernalising temperatures. Increased daylength decreased leaf number in these varieties, but never to a smaller number than for plants grown at 10°C. In these varieties, low intensity extension of the daylength had a similar (W26, Radames) or decreased (C3396) effect compared to full light extension. The hastening of time to flowering by long days could be separated into two effects: a high light energy effect hastened development by increasing the rate of leaf appearance in all varieties, while low light energy in thermo‐sensitive varieties was able to substitute for vernalisation by decreasing leaf number.
Read full abstract