The cell-free fluid (ascitic fluid, AF) of a sterile inflammatory peritoneal exudate elicited in rabbits is potently bactericidal for complement-resistant gram-negative as well as gram-positive bacterial species. This activity is absent in plasma. We now show that essentially all activity in AF against Staphylococcus aureus is attributable to a group II 14-kD phospholipase A2 (PLA2), previously purified from AF in this laboratory. Antistaphylococcal activity of purified PLA2 and of whole AF containing a corresponding amount of PLA2 was comparable and blocked by anti-AF-PLA2 serum. At concentrations present in AF (approximately 10 nM), AF PLA2 kills > 2 logs of 10(6) S. aureus/ml, including methicillin-resistant clinical isolates, and other species of gram-positive bacteria. Human group II PLA2 displays similar bactericidal activity toward S. aureus (LD90 approximately 1-5 nM), whereas 14-kD PLA2 from pig pancreas and snake venom are inactive even at micromolar doses. Bacterial killing by PLA2 requires Ca2+ and catalytic activity and is accompanied by bacterial phospholipolysis and disruption of the bacterial cell membrane and cell wall. These findings reveal that group II extracellular PLA2, the function of which at inflammatory sites has been unclear, is an extraordinarily potent endogenous antibiotic against S. aureus and other gram-positive bacteria.
Read full abstract