Magnetization constitutes an efficacious physical treatment technique applicable to saline water. The new spiral flow magnetizer, in conjunction with the cyclic magnetization process, has the effect of maximizing effective magnetization time and thereby achieving the optimal magnetization results. Based on this, saline water (0.27, 3, 6, and 10 g L−1) was treated with different levels of magnetization (0, 0.2, 0.4 and 0.6 T), and the effects of magnetized saline water (MSW) drip irrigation on loamy-sand soil moisture, soluble salt infiltration, and redistribution characteristics were studied through a vertical soil column simulation experiment. The results showed that the wetting front migration in MSW drip irrigation experiments exhibited minimal variation during soil water infiltration, and a notable change during redistribution with the experimental duration of 0.27 and 3g L−1 saline water treatments being significantly different (p < 0.05). Treating saline water with different mineralization levels with magnetization demonstrated water retention (0.27 g L−1 excluded) and salt drainage characteristics; calculated soil water storage increased by 1.58–14.19% and salt storage decreased by 0.22–7.66%. The optimal magnetization intensity for low-mineralization (0.27 and 3 g L−1) saline water was 0.2 T and for high-mineralization (6 and 10 g L−1) it was 0.6 T. The adsorption and exchange of cations (19.58–32.12%) by the optimum MSW treatments was greater than that of anions (9.46–14.15%); specifically, the relative exchange capacity of Ca2+ and Mg2+ in cations was more than K+ and Na+, while HCO3− and SO42− in anions was more than Cl−. This study provides theoretical and technical support for the irrigation of farmland with poor-quality water, as well as for the development of magnetized water irrigation technology.