As a primary source of mortality and disability, bacterial infections continue to develop a severe threat to humanity. Nuclear medicine imaging (NMI) is known for its promising potential to diagnose deep-seated bacterial infections. This work aims to develop a new technetium-99m (99mTc) labeled tigecycline radiopharmaceutical as an infection imaging agent. Reduced 99mTc was used to make a coordinate complex with tigecycline at pH 7.7-7.9 at room temperature. Instantaneous thin-layer chromatography impregnated with silica gel (ITLC-SG) and ray detector equipped high-performance liquid chromatography (ray-HPLC) was performed to access the radiolabeling yield and radiochemical purity (RCP). More than 91% labeling efficiency was achieved after 25 min of mild shaking of the reaction mixture. The radiolabeled complex was found intact up to 4 h in saline. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infection-induced rats were used to record the biodistribution of the radiopharmaceutical and its target specificity; 2 h' post-injection biodistribution revealed a 2.39 ± 0.29 target/non-target (T/NT) ratio in the E. coli infection-induced animal model, while a 2.9 ± 0.31 T/NT value was recorded in the S. aureus bacterial infection-induced animal model. [99mTc]Tc-tigecycline scintigraphy was performed in healthy rabbits using a single photon emission computed tomography (SPECT) camera. Scintigrams showed normal kidney perfusion and excretion into the bladder. In conclusion, the newly developed [99mTc]Tc-tigecycline radiopharmaceutical could be considered to diagnose broad-spectrum bacterial infections.