Nontypeable strains of Haemophilus influenzae (NTHi) are one of the most common cause of otitis media and the most frequent infection associated with exacerbations of chronic obstructive pulmonary disease; there is currently no vaccine in the U.S. to prevent NTHi. Using bioinformatics and structural vaccinology, we previously identified several NTHi species-conserved and sequence-conserved peptides that mediate passive protection in the rat model of infection. Using these, and similar peptides, we designed Hi Poly 1, a Bacterial Vaccine Polypeptide, comprising 9 unique peptides from 6 different surface proteins. Recombinant Hi Poly 1 was purified by affinity chromatography. Forty chinchillas were immunized three times with 200 µg of Hi Poly 1 with alum adjuvant; similarly, 41 controls were immunized with adjuvant alone. The average Log2 IgG titer among immunized animals was 17.04, and IgG antibodies against each component peptide were detected. In the infant rat model, antisera from immunized chinchillas provided significant passive protection compared to PBS (p = 0.01) and pre-immune sera (p = 0.03). In the established chinchilla model of NTHi otitis media, the vaccinated group cleared infection faster than the control group as indicated by significantly decreased positive findings on video-otoscopy (p < 0.0001) and tympanometry (p = 0.0002) on day 7, and for middle ear fluid obtained by aspiration (p = 0.0001) on day 10 post-infection. Using 12 representative NTHi strains in a Live-Cell ELISA, greater antibody binding to each strain was detected with post Hi Poly 1 than the pre-immune chinchilla antisera. The data from this proof-of-principle study demonstrate the effectiveness of Hi Poly 1 against the NTHi in two relevant preclinical models of bacteremia and otitis media as well as surface antibody binding across the species. The Bacterial Vaccine Polypeptide approach to a vaccine against NTHi also serves as a paradigm for development of similar vaccines to protect against other bacteria.
Read full abstract