Abstract

BackgroundVirus-specific CD8 T cells are essential for control of acute hepatitis C virus (HCV) infections, yet spontaneously fail in most patients leading to lifelong chronicity and increased risk for severe liver diseases. Efforts to study HCV-specific CD8 T-cell impairment have been hampered by a lack of small animal models. Recently, we established a rat model of chronic HCV-like infection using a hepacivirus homolog identified in Rattus norvegicus. The nature of virus-specific CD8 T-cell immunity in this model has yet to be determined.MethodsUsing two MHC class I tetramers against epitopes located in the E1 and NS5B proteins, we tracked the induction and phenotype of virus-specific CD8 T cells during chronic infection. Responses to infection were similarly analyzed in immune rats that had been vaccinated against the NS3-5B proteins, a strategy that is effective in this experimental setting.ResultsVirus-specific CD8 T cells expanded vigorously in liver shortly after infection but did not develop into functional effectors based upon failure to produce cytokines (IFNγ, TNFα, IL-2, IL-4, IL-10, IL-17A) following peptide stimulation. Notably, subversion of responses was not due to viral escape from T-cell recognition, but rather an intrinsic defect in the antiviral response. Indeed, these populations expressed the inhibitory receptor programed cell death-1 and other markers consistent with an arrested effector-like state precluded from long-term memory formation (CD127-CD27+CD28+CD62L-GranzymeB+). In contrast, adenoviral immunization of naïve rats protected virus-specific T cells from functional impairment after infection and supported memory response development, including against the E1 epitope not encoded by vaccine.ConclusionTogether, our findings reveal a spontaneous failure of virus-specific CD8 T cells following rat hepacivirus challenge that is highly reminiscent of human HCV infections. Furthermore, these results highlight the utility and significance of this model for understanding mechanisms of HCV persistence and protective immunity necessary for the development of effective vaccines and immune interventions.Disclosures All authors: No reported disclosures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.