In this paper, we present a smart, standalone, multi-platform stereo vision/IMU-based navigation system, providing ego-motion estimation. The real-time visual odometry algorithm is run on a nano ITX single-board computer (SBC) of 1.9 GHz CPU and 16-core GPU. High-resolution stereo images of 1.2 megapixel provide high-quality data. Tracking of up to 750 features is made possible at 5 fps thanks to a minimal, but efficient, features detection–stereo matching–feature tracking scheme runs on the GPU. Furthermore, the feature tracking algorithm benefits from assistance of a 100 Hz IMU whose accelerometer and gyroscope data provide inertial features prediction enhancing execution speed and tracking efficiency. In a space mission context, we demonstrate robustness and accuracy of the real-time generated 6-degrees-of-freedom trajectories from our visual odometry algorithm. Performance evaluations are comparable to ground truth measurements from an external motion capture system.
Read full abstract