Abstract

Accelerations and directional changes of flying animals derive from interactions between aerodynamic force production and the inertial resistance of the body to translation and rotation. Anatomical and allometric features of body design thus mediate the rapidity of aerial maneuvers. Both translational and rotational responsiveness of the body to applied force decrease with increased total mass. For flying vertebrates, contributions of the relatively heavy wings to whole-body rotational inertia are substantial, whereas the relatively light wings of many insect taxa suggest that rotational inertia is dominated by the contributions of body segments. In some circumstances, inertial features of wing design may be as significant as are their aerodynamic properties in influencing the rapidity of body rotations. Stability in flight requires force and moment balances that are usually attained via bilateral symmetry in wingbeat kinematics, whereas body roll and yaw derive from bilaterally asymmetric movements of both axial and appendicular structures. In many flying vertebrates, use of the tail facilitates the generation of aerodynamic torques and substantially enhances quickness of body rotation. Geometrical constraints on wingbeat kinematics may limit total force production and thus accelerational capacity in certain behavioral circumstances. Unitary limits to animal flight performance and maneuverability are unlikely, however, given varied and context-specific interactions among anatomical, biomechanical, and energetic features of design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.