Radiochromic film (RCF) and image plates (IPs) are both commonly used detectors in diagnostics fielded at inertial confinement fusion (ICF) and high-energy-density physics (HEDP) research facilities. Due to the intense x-ray background in all ICF/HEDP experiments, accurately calibrating the optical density of RCF as a function of x-ray dose, and the photostimulated luminescence per photon of IPs as a function of x-ray energy, is necessary for interpreting experimental results. Various measurements of the sensitivity curve of different IPs to x rays have been performed [Izumi et al., Proc. SPIE 8850, 885006 (2013) and Rosenberg et al., Rev. Sci. Instrum. 90(1), 013506 (2019)]; however, calibrating RCF is a tedious process that depends on factors such as the orientation in which the RCF is scanned in the film scanner and the batch of RCF used. These issues can be mitigated by cross-calibrating RCF with IPs to enable the use of IPs for the determination of dose on the RCF without scanning the RCF. Here, the first cross-calibration of RCF with IPs to quasi-monoenergetic titanium, copper, and molybdenum K-line x rays is presented. It is found that the IP-inferred dose rates on the RCF for the Ti and Mo x rays agree well with the measured dose rates, while the IP-inferred dose rate for the Cu x rays is larger than the measured dose rate by ∼2×. Explanations for this discrepancy and plans for future work are discussed.
Read full abstract