Abstract

The nuclear imaging system has been capturing neutron images of inertial confinement fusion (ICF) driven implosions for over a decade at the National Ignition Facility. This imaging system has evolved from one to three nearly orthogonal lines-of-sight, allowing for the study of three-dimensional shape characteristics of ignition shots. Limited-view tomography algorithms help visualize the burning hotspot in 3D and assess neutron source geometry using Legendre mode parameters. With its neutron, gamma-ray, and x-ray image reconstruction capabilities, NIS has provided critical insight into mechanisms that have limited implosion performance, such as fill tube diameter for ignition-type targets. This comprehensive diagnostic suite opens a window into the shape characteristics of ignition shots and how symmetry affects ICF implosion performance. In more recent ignition shots, neutron yields have visibly increased. Analyzing the shape and size of the reconstructed neutron source has shown an expansion of the burn volume, which is indicative of more efficient alpha heating during the implosion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.