This paper presents a numerical method in order to forecast the thermo-mechanical behavior and the residual stresses in the thermal spray coating process by using high velocity oxygen fuel (HVOF). A set of coupled equations of the heat conduction and stress/strain and solidification based on the metallo-thermo-mechanical theory is introduced into the simulation of thermal spraying. Here, an inelastic constitutive equation with capacity to represent relation of stress/strain during rapid solidification is employed. The numerical modelling based on the finite element method is proposed to solve the heat conduction associated with solidification in the sprayed layer and residual stresses on the interface between multi-layer materials, especially. In this paper, the simulated results of the temperature field, solidified domain and residual stresses in the sprayed layer including interfacial combinations between substrate and spray layer are presented, and the validity of the calculated results is discussed in comparison with the measured results obtained by X-ray diffraction.
Read full abstract