Following the COVID-19 restrictions, there was a sharp decline in global air quality and related environmental metrics. Due to the limited availability of in situ atmospheric data in Bangladesh, this study collected data on various air pollutants (NO2, SO2, CO, and PM2.5), greenhouse gases (CO2, CH4, and O3), as well as meteorological variables like Land Surface Temperature (LST), Relative Humidity (RH), Precipitation, surface albedo and Aerosol Optical Depth (AOD) from different datasets by Google Earth Engine (GEE), the International Energy Agency (IEA), NASA Giovanni, and NASA Power Access Viewer, covering periods before (2019), during (2020), and after (2021–2023) the COVID-19 lockdown in Bangladesh. GIS-based assessment alongside Principal Component Analysis (PCA) has been performed to explore the patterns, trends and correlations among the observed variables. Results showed in 2020 compared to 2019, NO2, SO2, CO, PM2.5, and CO2 concentrations decreases by 1.94, 16.67, 1.95, 2.08, and 6 %, respectively, while CH4 and O3 continued to rise. Meteorological variables exhibited a 0.16 °C decreases in LST, 6.4 % increases in RH, a 6 % reduction in AOD, and 6.36 % declines in surface albedo. Post-lockdown in 2021, air pollutants surged (NO2, SO2, CO, and PM2.5 increases by 17.3, 23.6, 0.6, and 8.3 %, respectively), with CO2, LST, and AOD rising by 8.5 %, 0.13 °C, and 8.3 %, and a slight 0.46 % decrease in RH compared to 2019 due to resuming more economic activities, transportation and industrial production works. The years 2022–2023 saw slight improvements in most variables except CH4, though concentrations did not revert to those of 2019. The findings of correlation coefficients revealed that pollutants and GHG are highly correlated with the meteorological variables specially with RH. This study underscores the substantial shifts in atmospheric variables from pre-to post-lockdown periods, offering valuable insights for more effective management of the greenhouse effect and air pollution control strategies.
Read full abstract