Conserved sequences across species have always provided valuable insights to improve our understanding on the human genome's entity and the interplay among different loci. Lymphoma/leukemia related factor (LRF) is encoded by ZBTB7A gene and belongs to an evolutionarily conserved family of transcription factors, implicated in vital cellular functions. The present data, demonstrating the wide-spread and the high overlap of the LRF/ZBTB7A recognition sites with genomic segments identified as CpG islands in the human genome, suggest that its binding capacity strongly depends on a specific sequence-encoded feature within CpGs. We have previously shown that de-methylation of the CpG island 326 lying in the ZBTB7A gene promoter is associated with impaired pharmacological induction of fetal hemoglobin in β-type hemoglobinopathies patients. Within this context we aimed to investigate the extent of the LRF/ZBTB7A conservation among primates and mouse genome, focusing our interest also on the CpG island flanking the gene's promoter region, in an effort to further establish its epigenetic regulatory role in human hematopoiesis and pharmacological involvement in hematopoietic disorders. Comparative analysis of the human ZBTB7A nucleotide and amino acid sequences and orthologous sequences among non-human primates and mouse, exhibited high conservation scores. Pathway analysis, clearly indicated that LRF/ZBTB7A influences conserved cellular processes. These data in conjunction with the high levels of expression foremost in hematopoietic tissues, highlighted LRF/ZBTB7A as an essential factor operating indisputably during hematopoiesis.