Abstract
Neutrophilia is a feature of sickle cell disease (SCD) that has been consistently correlated with clinical severity and has been shown to remain highly activated even at steady state. In addition to induction of fetal hemoglobin (HbF), hydroxyurea (HU) leads to reduction in neutrophil count and their adhesion properties, which contributes to the clinical efficacy of HU in SCD. Although HU reduces the frequency and severity of acute vaso-occlusive crises (VOCs) and chest syndrome, HU therapy does not abolish these acute clinical events. In this study we investigated whether neutrophils in SCD patients whilst on HU therapy retained features of detrimental pro-inflammatory activity. Freshly isolated neutrophils from SCD patients on HU therapy at steady state and from ethnic-matched healthy controls were evaluated ex vivo for their degranulation response and production of neutrophil extracellular traps (NETs). Unstimulated SCD patient neutrophils already produced NETs within 30 minutes, compared to none for healthy neutrophils, and by 4 hours, these neutrophils produced significantly more NETs than the control neutrophils (P = 0.0079**). Higher numbers of neutrophils from SCD patients also showed higher degree of degranulation-related intracellular features compared to healthy neutrophils, including rough-textured cellular membranes (P = 0.03*), double-positivity for F-Actin and CD63 (P = 0.02*) and re-located CD63 within cytoplasm more efficiently than their healthy counterparts (P = 0.02*). The neutrophils from SCD donors released more myeloperoxidase (P = 0.02*) in the absence of any trigger. Our data showed that neutrophils from patients with SCD at steady state remained active during hydroxyurea treatment and are likely to be able to contribute to the SCD pro-inflammatory environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.