Due to enhancement of industrial growth and urbanization, soil contamination is increasing prominently. Therefore, it is important to examine possible adverse effects of industrial waste. Soil samples were might to be polluted with several heavy-metals and pesticides. Gas chromatographic results showed occurrence of high-level of organochlorine and organophosphate pesticides in studied soil samples. Genotoxicity of soil extracts was assessed using environmental-risk assessment models. Soil samples were extracted in hexane and dichloromethane solvents and were evaluated for genotoxic potential by prokaryotic (Ames test, plasmid nicking assay and E. coli K-12 DNA repair defective mutants) and eukaryotic (Allium cepa root chromosomal aberration and Vigna radiata seed-germination test) bioassays. Strain TA98 was found the most susceptible among soil extracts. The mutagenicity of hexane soil extract from wastewater irrigation was found to be higher than that of DCM samples in terms of mutagenic index, mutagenic potential, and induction factor for Ames strains. The damage in DNA repair defective mutants of hexane extracts were found higher compared to DCM extracts at dose of 20 μl/ml of culture. Survival in polA, lexA and recA mutants were 39%, 47% and 55% while treated with hexane extract. Allium cepa test, mitotic index was decreased in dose-dependent way and various kinds of chromosomal aberrations were found. Vigna radiata seeds germination and other parameters were also affected when treated with wastewater irrigated (WWI) soil. Oxidative stress in V. radiata roots were also showed under CLS microscope. Genotoxicity of WWI soil extract was also confirmed by plasmid nicking test. Our study provides possible explanation for the assessment of potential health and environmental hazards of the industrial region.