Abstract
Biomimetic microenvironments are important for controlling stem cell functions. In this study, different microenvironmental conditions were investigated for the stepwise control of proliferation and chondrogenic differentiation of human bone-marrow-derived mesenchymal stem cells (hMSCs). The hMSCs were first cultured in collagen porous sponges and then embedded with or without collagen hydrogels for continual culture under different culture conditions. The different influences of collagen sponges, collagen hydrogels, and induction factors were investigated. The collagen sponges were beneficial for cell proliferation. The collagen sponges also promoted chondrogenic differentiation during culture in chondrogenic medium, which was superior to the effect of collagen sponges embedded with hydrogels without loading of induction factors. However, collagen sponges embedded with collagen hydrogels and loaded with induction factors had the same level of promotive effect on chondrogenic differentiation as collagen sponges during in vitro culture in chondrogenic medium and showed the highest promotive effect during in vivo subcutaneous implantation. The combination of collagen sponges with collagen hydrogels and induction factors could provide a platform for cell proliferation at an early stage and subsequent chondrogenic differentiation at a late stage. The results provide useful information for the chondrogenic differentiation of stem cells and cartilage tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.