Concrete-filled steel tubes (CFTs) offer significant structural advantages in terms of stiffness, strength, and ductility. The concrete core enhances the stiffness and compressive strength of columns, whereas the steel tube serves as a reinforcement to resist tension and bending by confining the concrete. Moreover, CFT columns offer exceptional resistance, such as high strength, ductility, and energy absorption capacity. This study presents experiments focused on prefabricated bridge piers featuring multiple CFT columns. Commercial circular steel tubes were utilized to streamline fabrication efforts, with bracings employed to enhance structural performance by connecting the CFT columns. Component tests were conducted for different connection details to prevent premature failure owing to cyclic loading. A full-scale modular pier was designed to explore its cyclic behavior using the bracing connection details derived from the component test. The plastification location in a modular pier can be designed using the connection details, as validated experimentally. The results of this study indicate that CFT columns, as the main component of the bridge pier, can be protected by designing connection details to induce stress concentration in the braces, thereby achieving ductile behavior.
Read full abstract