The hydropower turbine parts running in the sand-bearing flow will experience surface wear, leading to a decline in the hydropower unit’s stability, mechanical performance, and efficiency. A voiceprint signal-based method is proposed for extracting the flow sediment content feature of the hydropower unit. Firstly, the operating voiceprint information of the hydropower unit is obtained, and the signal is decomposed by the Ensemble Empirical Mode Decomposition (EEMD) algorithm, and a series of intrinsic mode functions (IMFs) are obtained. Combined with correlation analysis, more sensitive IMF components are extracted and input into a convolutional neural network (CNN) for training, and the multi-dimensional output of the fully connected layer of CNN is used as the feature vector. The k-means clustering algorithm is used to calculate the eigenvector clustering center of the hydropower unit with a clean flow state and a high sediment content state, and the characteristic index of the hydropower unit sediment content is constructed based on the Euclidean distance method. We define this characteristic index as SI, and the change in the SI value can reflect the degree of sediment content in the flow of the unit. A higher SI value indicates a lower sediment content, while a lower SI value suggests a higher sediment content. Combined with the sediment voiceprint data of the test bench, when the water flow changed from clear water to high sediment flow (1.492 × 105 mg/L), the SI value decreased from 1 to 0.06, and when the water flow with high sediment content returned to clear water, the SI value returned to 1. The experiment proves the effectiveness of the method. The extracted feature index can be used to detect the flow sediment content of the hydropower unit and give early warning in time, so as to improve the maintenance level of the hydropower unit.
Read full abstract