This article investigates the fragmentation of rock during the indentation process with a conical pick. The study explores the impact of indentation dip angle, indentation spacing, and confining pressure on rock fragmentation through simulation using the discrete element method. Rock models of coal and red sandstone are created and calibrated for the simulation. The findings indicate that the indentation force increases exponentially with the increase of indentation dip angle for both coal and red sandstone. The specific energy increases first and then decreases with the increase of indentation dip angle. The maximum specific energy is found in the condition of indentation dip angle of 25° for red sandstone, while it is 20° for coal. The indentation force increases logarithmically with the increase of indentation spacing tending to be an unrelieved indentation condition. The optimal indentation spacing with the lowest specific energy is determined to be 50 mm for breaking coal and 34 mm for breaking red sandstone. Additionally, the indentation force increases exponentially for coal while it increases linearly for red sandstone with the increase of the confining pressure. For both coal and red sandstone, specific energy increases with the increase of the confining pressure.
Read full abstract