We present a new approach to the effective development of complex retrieval components for case-based reasoning systems (CBR). Our approach goes beyond the traditional CBR approach by allowing an incremental refinement of an existing retrieval knowledge base during routine use of the system. The refinement takes place through a direct expert-system interaction while the expert is accomplishing their given tasks. We lend ideas from ripple-down rules (RDR), a proven method for the very effective and efficient acquisition of classification knowledge during the routine use of a knowledge-based system (KBS). In our approach the expert is only required to provide explanations of why, for a given problem, a certain case should be retrieved. Incrementally a complex retrieval knowledge base as a composition of many simple retrieval functions is developed. This approach is effective with respect to both the development of highly tailored and complex retrieval knowledge bases for CBR as well as providing an intuitive and feasible approach for the expert. The approach has been implemented in our CBR system MIKAS (Menu construction using an Incremental Knowledge Acquisition System) that allows to automatically construct a menu that is strongly tailored to the individual requirements and food preferences of a client.