Abstract
The use of ontologies in knowledge engineering arose as a solution to the difficulties associated with acquiring knowledge, commonly referred to as the knowledge acquisition bottleneck. The knowledge-level model represented in an ontology provides a much more structured and principled approach compared with earlier transfer-of-symbolic-knowledge approaches but brings with it a new problem, which can be termed the ontology-acquisition (and maintenance) bottleneck. Each ontological approach offers a different structure, different terms and different meanings for those terms. The unifying theme across approaches is the considerable effort associated with developing, validating and connecting ontologies. We propose an approach to engineering ontologies by retrospectively and automatically discovering them from existing data and knowledge sources in the organization. The method offered assists in the identification of similar and different terms and includes strategies for developing a shared ontology. The approach uses a human-centered, concept-based knowledge processing technique, known as formal concept analysis, to generate an ontology from examples. To assist classification of examples and to identify the salient features of the example, we use a rapid and incremental knowledge acquisition and representation technique, known as ripple-down rules. The method can be used as an alternative or complement to other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.