This work aims to utilize selenium nanoparticles (Se-NPs) as a novel dyestuff, which endows wool fibers with an orange color because of their localized surface plasmon resonance. The color characteristics of dyed fibers were evaluated and analyzed. The color depth of the dyed fabrics under study was increased with the increase in Se content and dyeing temperature. The colored wool fabrics were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and an X-ray diffraction (XRD) analysis. The results indicated that spherical Se-NPs with a spherical shape were consistently deposited onto the surface of wool fibers with good distribution. In addition, the influence of high temperature on the color characteristics and imparted functionalities of the dyed fabrics were also investigated. The obtained results showed that the proposed dyeing process is highly durable to washing after 10 cycles of washes, and the acquired functionalities, mainly antimicrobial activity and UV-blocking properties, were only marginally affected, maintaining an excellent fastness property.
Read full abstract