In pursuit of overcoming Fenton oxidation limitations in wastewater treatment, an introduction of a heterogeneous photocatalyst was developed. In this regard, the current work introduces ZnO nanocrystals that were successfully prepared via a thermal decomposition technique and then capped with oleic acid (OA). The synthesized ZnO-OA and the pristine ZnO were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM). Then, the study introduces the application of such materials in advanced oxidation processes, i.e., a Fenton reaction to treat dye-containing wastewater. Synthetic wastewater that was prepared using Reactive Blue 4 (RB4) was used as a simulated textile wastewater effluent. Fenton’s oxidation was applied, and the system parameters were assessed using the modified Fenton’s system. The synthesized samples of ZnO were characterized by a recognized wurtzite hexagonal structure. The surface modification of ZnO with oleic acid (OA) resulted in an increase in crystallite size, lattice parameters, and cell volume. These modifications were linked to the efficient capping of ZnO nanoparticles by OA, which further improved the dispersion of the nanoparticles, as demonstrated through SEM imaging. The optimum conditions of ZnO- and ZnO-OA-synthesized modified Fenton composites showed 400 mg/L and 40 mg/L for H2O2 and the catalyst, respectively, at pH 3.0, and within 90 min under UV irradiation the maximal dye oxidation reached 93%. The catalytic performance at its optimal circumstances was in accordance with a pseudo-second-order kinetics model for both ZnO-OA- and the pristine ZnO-based Fenton’s systems. The thermodynamic parameters, including the enthalpy (ΔH′), the entropy (ΔS′), and Gibbs free energy (ΔG′) of activations, were also checked, and their values settled that both ZnO and ZnO-OA Fenton systems are non-spontaneous in nature. Furthermore, the reaction signified for processing at a low energy barrier condition (10.38 and 31.38 kJ/mol for ZnO-OA- and the pristine ZnO-based Fenton reactions, respectively).
Read full abstract